PMQ Final Focusing

using permanent magnets to build a "brute force" final focus for the muon collider

Outline

- 1. Approach to the problem
- 2. Permanent Magnet Quadrupoles
- 3. Triplet focusing for maximum IP demagnification
- 4. Implementation specifics at the Muon Collider

√s (TeV)	1.5	3
Av. Luminosity / IP (10 ³⁴ /cm ² /s)	0.8	3.4
Max. bending field (T)	10	14
Av. bending field in arcs (T)	6	8.4
Circumference (km)	3	4.5
No. of IPs	2	2
Repetition Rate (Hz)	15	12
Beam-beam parameter/IP	0.1	0.1
β* (cm)	1	0.5
Beam size @ IP (μm)	6	3
Bunch length (cm)	1	0.5
No. bunches / beam	1	1
No. muons/bunch (10 ¹²)	2	2
Norm. Trans. Emit. (μm)	25	25
Energy spread (%)	0.1	0.1
Norm. long. Emit. (m)	0.07	0.07
Total RF voltage (MV) at 800MHz	80	900
μ+ in collision / 8GeV proton	0.008	0.007
ิจ์ GeV proton beam power (MW)	4.8	4.3
Aperture of the focusing el	ements	

$$\langle \mathcal{L} \rangle = f_0 \frac{n_b N_\mu^2}{4\pi\varepsilon_\perp \beta^*} h \times \frac{1}{2} \mathcal{T}_{rep} \sim \frac{P_\mu \xi}{C\beta^*} h \tau$$

 $P\mu$ – average muon beam power (~ γ)

$$\xi = \frac{r_{\mu}N_{\mu}}{4\pi\gamma\varepsilon_{\perp}}$$
 – beam-beam parameter

 $\gamma\epsilon_{\perp}$ – normalized emittance

C – collider circumference ($\sim \gamma$ if B=const)

 τ – muon lifetime (~ γ)

 β^* – beta-function at IP

NF & MC challenges - Y Alexahin

ICAP09, San Francisco, August 31 2009

UCLA's PMQs

J. Lim PR-STAB 072401

- Minimum focal length of the triplet set by detector equipment and triplet length
- Stronger gradient is better because it means a shorter magnet
- Analysis approach:
 - 1) What is the most powerful gradient that can be created?
 - 2) What will it mean for the final focus lattice and the beam itself?

To answer (1) we need...

Halbach's PMQs

- Small inner radius
- Large remnant field
- a is the segmentation factor

$$-16 \text{ pieces a} = 0.937$$

$$-32 \text{ pieces a} = 0.984$$

- -x = 10 leaves 10% on the table
- Engineering thick to thin can be mitigated with nesting

$$B' = a \frac{2B_r}{r_i} (\frac{x-1}{x})$$

$$r_o = xr_i$$

J. Lim PR-STAB 072401

Nesting

Examples

• $r_i = 3$ mm, x = 10, 32 segments (5 sigma beam)

• $2 B_r/r_i = 1130 T/m$ - $B_r=1.7 T, r_i=3 mm$

Maxwell 2D Results

Inner Radius -> # of Segments r _o =30 mm in both cases	5*sigma 3.0 mm	6*sigma 3.6 mm
16	960 T/m estion answered!	780 T/m
32	990 T/m	810 T/m

Triplet Design I

- Assume: initial alpha i = 0 and round beam
- Desire: round beam at waist at IP

Muon Collider Physics Workshop Finn O'Shea

Triplet Design II

- Minimum beam size after a focusing system is a minimum when: $\frac{\beta_0}{f_{eff}} = \frac{p}{\sigma_{\sigma_0}}$
- Optimization of triplet leads to "obvious" solution of short focal length lenses with a large starting beta $\beta^* = \frac{4f_0}{2}$
- This leads to a problem...

$$\alpha^* = \frac{2f_Q}{\beta_0}$$

The trouble with beta and sigma

 Triplet design suggests large initial beta function while limited aperture requires small sigma

$$\sigma^2 = \frac{\beta \varepsilon_n}{\gamma}$$

Emittance vs Energy

$$\sigma^2 = \frac{\beta \varepsilon_n}{\gamma}$$

- The key to feasibility is shrinking emittance or dialing up energy
- The 2nd is unlikely so go with the 1st

How small must emittance be?

Minimum beam size at IP when:

$$\frac{\beta_0}{f_{eff}} \cong \frac{p}{\sigma_{\sigma_p}}$$

- Change beta and emittance without enlarging sigma
- With such difficult constraints why think about PMQs?

Beta	Emit (micron)	B' (T/m)	Beta*
100	25	1000	17
700	3.6	1000	2.4
1500	1.7	1000	1.0
1500	1.7	750	1.5

Why PMQs?

- Opportunity to press higher field Praseodymium based cryogenic magnets into service
- Temperature tuning of gradient for cryogenic magnets?
- We have experience making them and using them for final focusing systems

What's so great about Pr?

- No spin axis reorientation like Neodymium
- Incredible coercivity when cooled
- Both H_{cj} and B_r increase with decreasing temperature
- Radiation resistant magnets are good for a collider with a decaying beam and near IP

Praseodymium Material

- Careful assembly and handling
- Local heating model of demagnetization predicts "bullet-proof" magnets with ample cooling power
- All studies on NdFeB magnets agree with this assessment
- At $30K B_r = 1.7 T$

Conclusions

- Current goal of 20 pi mm -> 25 pi um must be extended to 2.5 pi um for a triplet PMQ solution that uses cutting edge materials
- "only" a factor of 10⁴ reduction as compared to the current goal of 10³

Thanks to Gerard Andonian for the elegant simulations and lots of input